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Statistical considerations are applied to quantum mechanical amplitudes. The 
physical motivation is the progress in the spectroscopy of highly excited states. 
The corresponding wave functions are "strongly mixed." In terms of a basis set 
of eigenfunctions of a zeroth-order Hamiltonian with good quantum numbers, 
such wave functions have contributions from many basis states. The vector x is 
considered whose components are the expansion coefficients in that basis. Any 
amplitude can be written as a t .  x. It is argued that the components of x and 
hence other amplitudes can be regarded as random variables. The maximum 
entropy formalism is applied to determine the corresponding distribution 
function. Two amplitudes a* .x  and b t . x  are independently distributed if 
b t .  a = 0. It is suggested that the theory of quantal measurements implies that, 
in general, one can one determine the distribution of amplitudes and not the 
amplitudes themselves. 

KEY WORDS: Fluctuations; spectra; intensities; statistical theories; mixing; 
chaos; maximum entropy. 

1. I N T R O D U C T I O N  

I h a v e  h a d  t he  bene f i t  of  m a n y  s t i m u l a t i n g  d i s c u s s i o n s  of  t he  m a x i m u m  

e n t r o p y  f o r m a l i s m  w i t h  Prof .  H o w a r d  Reiss.  W h i l e  his  m o s t  r e c e n t  

i n t e r e s t  (1~ was  in  a p p l i c a t i o n s  to  s o c i o t e c h n i c a l  sys t ems ,  I a m  p r i m a r i l y  

c o n c e r n e d  w i t h  m o l e c u l a r  a n d  n u c l e a r  phys ics .  T h e r e  is a r e a s o n  b e h i n d  m y  

c o n f i n i n g  t he  r a n g e  o f  a p p l i c a t i o n s .  S u p p o s e  t h a t  we h a v e  a c o n t i n u o u s  

v a r i a b l e  x d e f i n e d  o v e r  t he  i n t e r v a l  z e r o  to  one .  W i t h o u t  a n y  a d d i t i o n a l  

i n f o r m a t i o n ,  t he  p r o b a b i l i t y  d e n s i t y  f x ( x )  o f  x w h i c h  is o f  m a x i m a l  e n t r o p y  
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is the uniform one. Let y be another continuous variable, y = x 2. The 
probability density fy(y) which is of maximal entropy is the uniform one. 
This is clearly inconsistent with familiar rule 

f y( y ) = ~ f ~(x )/ t dy/dxl (1) 

where the sum is over all such values of x that correspond to a given value 
of y. The problem is not limited to continuous variables. Take a variable j 
whose range is the nonnegative integers up to some maximal value. The 
maximal entropy distribution o f j  is uniform. An example where this will be 
physically incorrect is if j is the length of the angular momentum vector j 
(it is j itself which is uniformly distributed). 

The resolution of the problem is that in the maximal entropy 
approach one must provide an identification of the particular variable 
which, in the absence of any information, has a uniform distribution. (2) 
This is so whether the variable is discrete or continuous. The identification 
of this, sometimes called "natural," variable must be provided from outside 
of the formalism. A paradigm was provided by Maxwell when he derived 
the Boltzmann velocity distribution from the requirement that the dis- 
tribution remains invariant under rotation of the coordinate system and by 
von Neumann when he used a similar invariance argument to introduce 
the expression for the entropy of a quantal mixture. (3) I have always felt 
that the (often implicit) identification of the natural variable is the most 
problematic aspect in the applications of the maximum entropy formalism 
to problems outside the physical sciences. (4) In this article I discuss a 
problem in quantum mechanics where the identification of the natural 
variable is also not obvious. The novel aspect is that I shall discuss the 
entropy of the distribution of quantum mechanical amplitudes. In this case, 
too, an appeal to an invariance argument will suggest the proper variable. 
Before turning to the technical discussion, I begin with general con- 
siderations regarding fluctuating amplitudes followed by a specific 
motivation, with applications to a problem of current experimental interest. 

2. F L U C T U A T I O N S  IN Q U A N T A L  A M P L I T U D E S  

The essence of the problem is as follows. Consider a quantum 
mechanical system in a particular pure state 0. Given a complete set of 
orthonormal eigenstates ~b r of some observable R, R~br= r ~ r  , o n e  can 
expand 0 in this basis 

0=y~ (~ r [0 )  ~r (2) 
r 

Here, (0[~br) is the scalar product, which we shall refer to as the 
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amplitude. Unless 0 is one of the basis functions, there will be more than 
one nonzero amplitude. The familiar interpretation is that the observable R 
upon measurement for the system in the state 0 will have a distribution of 
values. The probability of observing R to have the value r is the modulus 
squared of the relevant amplitude, i.e., I ( 01 ~r )1 2 We are usually cautioned 
not to confuse this inherently quantal dispersion in the results of measuring 
R with a classical uncertainty. The latter corresponds to a quantum 
mechanical mixture. (3) In the Copenhagen interpretation, a pure quantum 
mechanical state is sharply defined. The dispersion in the observed values 
for R is a result of the filtration (5~ due to the measurement process. The 
familiar expression for the mean value of R 

(R)=~r](Ol~r)[  2 (3) 
r 

may look just like a classical average, but one must not interpret the pure 
state as a "mixture." The loss of phase is a result of the measurement 
process. My intention is not to challenge these ideas, but to take them 
somewhat further in the same logical direction. 

There is a dispersion in the measurement of R, since 0 is not an 
eigenstate of R. Well, 0 is not an eigenstate of the operator 6(R-  r) either. 
Why then do we assign a definite answer to the measurement of this 
operator? In part, this is a figure of speech. What we really know is 
( 3 ( r -  R) ) ,  i.e., the mean value of the operator. The possible conclusion is 
then that the amplitude (0[~br) can fluctuate about its mean value. It is 
these fluctuations that we want to examine. 

One can always argue that the fluctuations we speak of are not those 
in the expansion coefficients of the wave function 0 itself but of the mixed 
state obtained following the measurement of R, or of 6 ( R - r ) .  That is 
possible, but does call for certain modifications on the technical level. 
The reason is that the traditional answer for the mixed state p following a 
measurement (without sorting (5~) of the values of R is 

p = ~  I(0t~r)l 2 t~r)(~rl (4) 
r 

In such a state 6(R-r)  has a sharp value without fluctuations. 
On the other hand, we must recognize that the mixed state p rEq. (4)] 

does not correspond to a unique wave function. Hence, if we are given the 
Prr (the diagonal elements of the diagonal density operator p), we cannot 
assign a unique wave function. This is the technical modification that we 
regard as inevitable: If the results of quantum mechanical measurements 
are invariably mixed states, (3,5~ then all we can measure are diagonal 
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elements of the density matrix. 2 Under such circumstances we must allow 
for the possibility that the amplitudes of any particular wave function will 
fluctuate. 

A word about notation. In his book, Tolman (6) writes ]a[ 2 for the 
quantity I denote by ([xl2) .  Tolman introduces an ensemble such that 

, 1 ~ ar(~)as(~) (5) Psr - ar as = ~ * 

where ar(~) is the rth amplitude for the member ~, ~ = 1 ..... N, of the ensem- 
ble. I reiterate that our ensemble here is the collection of wave functions 
which correspond to a given density matrix p, my not quite orthodox point 
of view being that if p is what can be measured, then it is p (rather than the 
wave function) that is what we know. Of course, one can arrange for a 
measurement to specify a pure state, p2= p. 

3. THE S I G N A T U R E  OF CLASSICAL C H A O S  

The problem I discuss arose in the context of looking for the signature 
of classical chaos (v) in the optical spectra of molecules. r For  high-lying 
excited states of molecules, an eigenfunction 10) of the true molecular 
Hamiltonian is a linear combination of many eigenstates I~br) of an 
approximate (or "zeroth-order") molecular Hamiltonian.(l~ The 
approximate Hamiltonian has good quantum numbers, so that the optical 
transition probabilities (il/~ [~br) from some low-lying state li) can be 
readily estimated. Often, only a few states ~br carry oscillator strength from 
l i) .  These are then known as "the bright states." The transition probability 
I(il/2 [0)l 2-- (0l # b i ) ( i l / 2 1 0 )  is then given in terms of the amplitudes 

(il # 10~ = ~  (il # I~r)(~rl0~ (6) 
r 

Unless there is just one bright state, the probability will contain many cross 
terms, 

1(i1 kt 10)12 = ~ ,  (0]~bs)(~bs]/~ ] i ) ( i l  I~ I~)r)(~r]O) (7) 
r , s  

An important question, which I shall address below, is how to determine 
the minimal number of bright states necessary to interpret the spectra. For  
future reference note that the absorption intensity can be written as 

= (d*" x) 2 = x*" (dd*) �9 x (8) 

2 The density matrix need be diagonal only in the appropriate basis. It need not be diagonal in 
another basis. Hence, off-diagonal elements can be measured by a suitable arrangement. 
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where d is the "systematic" part of the transition dipole, i.e., a column 
vector whose elements are (il/~ I~br), and x is a column vector of the 
amplitudes, dd* is a square matrix, which is the matrix representation of 
the operator #l i )  (il/z in the basis {r }. A Gaussian distribution for tam- 
plitudes of strongly mixed wave functions has been proposed on the basis 
of semiclassical considerations (1~) and verified on the basis of numerical 
evidence.(~~ 

Much earlier, the problem of fluctuating amplitudes arose in molecular 
collision theory. (12'~3) Consider a problem with many accessible final states 
(denoted by r, these are eigenstates of the asymptotic Hamiltonian.) Then, 
with ]0) = S[ i ), where S is the scattering operator, the scalar products are 
the transition amplitudes (OrJO)=(OrIS[i). The unitarity of the S 
operator implies that the transition amplitudes can be regarded as com- 
ponents of a unit vector in multidimensional space. That is, of course, 
always true for the scalar products themselves, 

I<@~1o)1== 1 (9) 
r 

It was felt that when the initial state [ i )  is strongly coupled to many final 
states ql r, the unit vector will be randomly distributed over the unit sphere. 
The numerical evidence is discussed in ref. 14. In those early days, the con- 
cept of classical chaos was not widespread. Instead, one spoke of 
"dominant coupling," that is, a wave function with many nonvanishing 
amplitudes with respect to a basis set of physical relevance. In scattering 
theory there is a natural choice for such a basis as a basis for a zeroth- 
order Hamiltonian corresponding to noninteracting ( t ~  oo) projectiles. 
Feshbach ~15) pointed out that there can be other choices (PHP in his 
notation). This is useful whenever there is a separation of time scales. (16) 

Similar developments in nuclear physics gave rise to random matrix 
(RM) theory. (~7'181 I shall not follow this approach for two reasons. The 
first is that to determine the distribution of the scalar products (~brJ 0)  for 
variable r (and fixed R), the RM approach is to hold r fixed and to 
introduce an ensemble of operators R. The other reason is that I shall 
argue that a "universal" functional form for the fluctuations is only possible 
in the chaotic limit, which is, I claim, what the RM method provides. One 
needs, however, to be able to discuss deviations (possibly quite large) from 
that limit. For a computational example showing such deviations and the 
onset of chaotic behavior for stronger coupling see ref. 19. 
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4. THE J O I N T  D I S T R I B U T I O N  OF F L U C T U A T I O N S  

A given state 0 corresponds to many (possibly an infinite number) of 
amplitudes. Hence one must consider in general the joint distribution of 
these amplitudes. For such a joint distribution there are different fluc- 
tuations that can be computed. There are also different, so-called 
"marginal" distributions which correspond to the distribution in one or 
more (but not all) amplitudes. It is seldom that we are interested in the full 
distribution Px(X) where x is a (column) vector whose elements are the 
amplitudes. There are two distributions in which we are particularly 
interested. The first is the (marginal) distribution of a particular amplitude 
x, Px(x), 

Px(X) = f  dx' Px(x) (10) 

where dx' implies integration over all other amplitudes. 
The second distribution of interest is that of the results of 

measurements. Say the operator A is measured and let ~-= (O[A 10). Then, 
if A is the matrix representation of the operator A in the basis ~br, we have, 
using (2), 

~ = x t A x  (11) 
and 

P~(() = f dx 6(( - x+Ax) Px(X) (12) 

= 6,,,6r. t. A special case of ~ is the variable Yr = IX,I 2 corresponding to A,,t 
A similar form for A is for intensities in optical spectra when 

= I(il # I f ) l  z and i and f d e n o t e  the initial and final states for the trans- 
ition. Note that we do not necessarily imply that the state f is one of the 
eigenstates r. Hence, in this case we can take the operator A to be 
# I i ) ( i l  # and the amplitudes of the final state f i n  the basis of the ~b r [see 
Eq. (2)]. 

5. A S IMPLE  D E R I V A T I O N  

A simple derivation of the form of the distribution Px(x) can be based 
on an ergodiclike assumption, as follows. What we always know about the 
amplitudes is that they are normalized 3 

R 

x 2= ( 0 1 0 )  (13) 
r = l  

3 Note that if 10) is normalized, (010) = 1. The point is that the sum (13) is a property of the 
state 10). 
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where for simplicity we write (13) as if the amplitudes are real (this restric- 
tion is removed later.) Now comes the assumption that the average of xr 
over all states r equals the average of x 2 over its distribution P~(x). This is 
the assumption that each amplitude fluctuates independently with the same 
distribution. Then, one can rewrite (13) as 

(x  2) = f x2px(x) dx = (OtO)/R (14) 

A more innocent way of getting this result is to say that we replace in (13) 
the summation over all R states r by a summation over all values of the 
amplitude so that Px(x) dx is the fraction of states r with an amplitude in 
the range x to x + dx. 

The distribution p~(x) is normalized 

I Px(x)dx= 1 (15) 

and is known to have a given second moment [Eq. (14)]. It is otherwise 
unknown, and hence we select the particular distribution which satisfies the 
normalization (15) and the second moment (14) constraints, and is 
otherwise of maximal entropy. The result is a Gaussian: 

Px(x) = (27r ( x  2 ) )  - i/2 exp( - x2/2 (x  2 )) (16) 

This is not a pleasing result for the expermentalists. What is directly 
measured are the probabilities yr=x~, and (16) implies that their dis- 
tribution [see Eq. (1)] 

py(y) = (2rc(y))-~/2 y-1/2 e x p ( - y / 2 ( y ) )  (17) 

is strongly peaked at the origin. If, say, the Yr are optical transition 
probabilities, then (17) implies sensitivity to the weakest transitions, i.e., 
the ones most likely to be masked by noise. 

At this point, the caveat mentioned in the introduction needs to be 
considered. The result (17) is an immediate consequence of the fact that we 
chose to maximize the entropy Six] of Px(x), 

Six] - - f  dx Px(x) In Px(x) (18) 

If instead we had decided to maximize the entropy of Py(y), we would have 
obtained a distribution which is still peaked at the origin but with a more 
moderate decline. Our choice is based on the requirement that the dis- 
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tribution of amplitudes, when we know nothing about the state 10) besides 
its normalization (010) ,  should be the same for all choices of the basis sets 
{~br}. In particular, it should be invriant to changes in the phase of the 
basis functions, so that Px(X)= Px(-X). This implies that a given value of 
y is doubly degenerate, i.e., it can result from two distinct "elementary" 
events y--Ix[  2 and y =  I - x l  2. A more elegant way of stating the same 
condition is 

(X1-'~ X2~ (Xl-- X2~= 
P.  \ ~ / Px \ ~/~ / P(X1) e(x2) (19) 

which leads to the same conclusion. 
_ _  2 2 In general, the amplitudes will be complex and y - x~ + x 2, where x~ 

and x2 are the real and imaginary parts of the amplitude respectively. 
Hence the degeneracy of y is higher. The normalization condition (14) now 
reads 

(IxlZ> - (x~> + (x~> 

~ f dX1 dx2x2rx(xl' x2)-lf dxl dx2 x2px(xl' x2)= (O]O)/e (20) 

Maximizing the entropy of Px(x~, x:) subject to its normalization and to 
(20) leads to 

with 

Px(xl, x2) = Px(xl) P~(x2) (21) 

Px(xl) = (2~c(Ixl2)) -1/2 exp( -x2 /2  ({x[2)) (22) 

and similarly for the distribution of x2. Note that it is an implication of 
(21) that (1) xl and x2 are independently distributed and (2) the Lagrange 
multiplier for xl and x2 has the same value. This is an immediate con- 
sequence of the constraint (20), which only specifies the value of the sum 
( x  2) + (x~)  but not the magnitude of the two individual terms. For this 
case we have 

Px(Xl, x2)= (27~(1xl2)) 1 exp(-[xl2/(Lx]2))  (23) 

and changing variables to Ix{ and O, x~ = Ixl cos O, and x2 = Ix[ sin O, we 
have, on integration over O, 

p y ( y )  _= (y ) -1  exp(-y / (y) )  (24) 
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The result that different amplitudes are distributed as independent 
Gaussian variables of zero mean and common variance is valid only when 
the sole constraint imposed on the distribution is the sum rule (20). Such a 
sum rule is invariably valid. Hence, the joint distribution over n basis states 

Px(x) = (2~zn( Ixt 2 ) ) -n  e x p ( -  x tx /2( Ix l  2)) (25) 

is only valid in the absence of any additional constraints. It makes sense to 
suggest that such would be the case for a state 0 which is "strongly mixed." 
It has indeed been proposed ~n) that the distribution corresponds to what 
we mean by "quantum chaos." Our own point of view ~s'91 is that it is the 
absence of any system-specific constraints that identifies the most entropic 
distribution (25) as the limiting case of being most chaotic. 

6. S I M P L E  A P P L I C A T I O N S  

In general, we need the distribution of ~ = x~Ax, [see Eq. (12)] when 
the variables x are independent Gaussian variables. A is the matrix 
representation of an observable and hence can always be brought to 
diagonal form 

A = U laU (26) 

by a unitary transformation. In (26), a is a diagonal matrix made up of the 
eigenvalues of Azi= aiz~. Some of these may be zero (in which case the 
rank of A is lower than its dimension), and others may be degenerate. 
Hence, ff can be written, using the new amplitudes x', 

as 
x ' = U x  (27) 

(28) ~ = R  Ix~tax '=R-1  ~ aix~2.-~-R -1 ~ ai(Zi~ 2 
i=I i~l 

Here, n is the rank of A, R is the dimension of A, and we have rescaled the 
amplitudes x'  so that (Ix' l  2) = 1. Since Px is invariant under a unitary dis- 
tribution, ~ is the weighted sum of n independent Gaussian variables with 
zero mean and unit variance. This is a central conclusion and hence I 
reiterate that in the limit when the state in question is strongly mixed, any 
expectation value is the sum of n independent Gaussian variables. It is also 
to be noted that n can be quite small, e.g., n =  1 if A is a projection 
operator. Indeed, in general, by the spectral theorem 

A = ~ oiP  i (29) 
i=l 
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where the Pi are projection operators on orthogonal subspaces, 
PiPj = 6i, jP~. I shall restate this result below. 

The moments of the distribution Pc(~) are given in the appendix to 
ref. 7. They can be computed via the characteristic function ~bc(t) of Pc(~), 

~b~(t) = f exp(it~) P~(~) d~ (30) 

as follows4: Let ~bx,(tl, t2,... ) be the characteristic function of Px,(x'l, x'2,...). 
Then, by the Cramer-Wold theorem, (2~ 

q ~ ( t )  = ~ b x , ( R -  l a  1 t, R - l a  2 t , . . . )  

where the ai are as in Eq. (29). 
The characteristic function of a normal variable of zero mean and unit 

variance is 

fbx,(t)=(l_2it ) 1/2 

Hence, 

~br f-I (1 - 2iR-lait) -1/2= l l -  2itR-~AI ~/2 
i ~ l  

(31) 

where det A = I AI and ! is the unit matrix. 
In general, the Fourier transform of ~br cannot be evaluated 

analytically. An exception is when all nonzero eigenvalues of A are equal, 
so that 

Then, 

~=(a/R) ~ ,2 I ) x, , (~)=(a/R) ~ x; 2 =n(a/R) (32) 
i = 1  i 

p~_(~) = ~n/2-1 exp( -n~ /2 (~ ) ) / (2 (~ ) /n )  "/2 F(n/2) (33) 

which is known as a "chi-square distribution with n degrees of freedom." 
Otherwise, one can use log ~bc(t) as the cumulant generating function (2~ to 
obtain for the mth cumulant 

lCm=2m-l(m--1)! ~ (ai/N) m 
i=1  

=2m-l(m--1)!R " T R A  m 

4 Prof. W. H. Miller informs me that he has independently obtained this result. 

(34) 
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When all nonzero eigenvalues of A are equal, this reduces to 

~c,,, = 2 m- l(m - 1)! n(a/R) m (35) 

which is the correct result for the chi-square distribution (33), as 
( ( )  = (a/R) n. 

As a check of the manipulations that led to (35), we compute K 2 
directly. For this purpose note that since the xr are independent Gaussian 
variables with a variance <[xr[2) = 1/R independent of r; then 

({Xr[4 > = 3/R 2 

<lXrl 2 IXsl2> = 1/R 2 

<x~*x~x~x,, > = 0, otherwise 

(36) 

Hence 

< ( ( _  <~))2) =~-~2 ~ A~,A~ = 2(~) 2 Tr(AZ)/[Tr(A)] 2 
r = l  

(37) 

We return now to the central result. Consider two observables 

(I = x+AIx (2 = x'A2 x (38) 

A necessary and sufficient condition that these observables be independent 
is that (2~ 

A1A2=0 (39) 

It follows that given a Hermitian matrix A, it can always be resolved, using 
the spectral theorem, as a sum of matrices Ai which satisfy (39). Hence, one 
always regards the variables x' as providing a set of independently 
fluctuating components of the variable (. Moreover, the number of such 
independent components is the rank of the matrix A. The rank is, of 
course, independent of the basis used to initially compute the matrix A. 
This conclusion is of sufficient importance that I discuss the physical 
implications below. In terms of the amplitudes themselves, the two 
amplitudes d~-x and d2*.x are independently distributed if d~*. d 2 ~ 0. The 
proof is an immediate consequence of (39) by taking A l - d l " d ~  and 
similarly for A2. We reiterate that all these conclusions are valid for the 
distribution (25), which has been derived in the simple case where the 
normalization is the only constraint. 
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7. THE I N V A R I A N C E  A R G U M E N T  

From the beginning I have used the notation Px(x) because it is the 
amplitudes that turn out to be the natural variables. At first glance, this 
offends our classical sensibilities, which regard the probabilities Yr = X~ as 
the real observables. However, the transformation law in quantum 
mechanics is linear in the amplitudes. That is, the amplitudes x' in the new 
basis ~b' are related to the amplitudes x by 

x' = Ux (40) 

where U is a unitary (the so-called "overlap") matrix. An observable A 
transforms as 

A ' = U A U  l (41) 

so that ~ = x*Ax is invariant to the choice of basis. Indeed, while we have 
not been able to compute Pc(~) in general, note that its cumulants, 
Eq. (34), are independent of the basis used to represent A, since the trace of 
A m has the same value in any basis. 

8. G A T E W A Y  STATES 

In general, as long as the amplitudes x are distributed as independent 
Gaussian variables with a common mean, we are able to write any expec- 
tation value as a sum of n, n ~< R, independent variables 

(0[ A [ 0 ) =  ~ a i (z i 'x  ) (42) 

To discuss the physical implication, consider a special form of A, namely 

A = T * P T  (43) 

where T is a transition operator and P is a projection. For  example, if 
P =  6 ( E - H )  then, but for kinematic factors, (01 A 10) is the total rate of 
transitions out of the state [0). If T is the dipole operator and P is the 
projector on the initial state, then we have the intensity of the optical 
transition into 10), etc. 

The eigenvectors z;, i = 1 ..... n, provide an orthonormal basis for A 

A = E aiz~- zi, zezJ = ~u (44) 
i 

such that the transition probability is a sum of n independent components. I 
argue that each such component represents what is often known as a 
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"doorway" or a "gateway" for the transition, that is, an independent com- 
ponent. If all the ai are similar in magnitude, one can determine n from the 
magnitude of the width •2 = ~2 of the distribution of amplitudes. Thus, 
using (37), with (a/R)= (~)/n, one has 

( ( ~ _  (~ ) )2 )  = (2/n)<~)2 (45) 

In general, using (34), one has 

((~--  ( ~ ) ) 2 ) = 2 R - 2 ,  ~'1= a~>~ (~)2 (46) 

Hence, if we define neff by 

((~ _ ( i f ) )2)  = (2/nerf)(~)2 (47) 

it follows that nefr~n. The variance of the distributions of ~ provides a 
lower bound for the number of doorway states. 

9. T H E  G E N E R A L  CASE 

Thus far I have discussed the simplest case when the only information 
about the state 10) was its normalization. This served to fix the sum of the 
variances 

( txrl2)  = (010)  (48) 
r 

and with the invariance condition ( x i ) =  0 implied a normal distribution 
with a common variance and zero covariance for all the amplitudes. In the 
most general case what we know about a state is its density matrix p. With 
the interpretation (5), we have 

p , , =  ( x ' x , ) =  ( (Xr-- (Xr) )* (Xs-- <X,) ) ) (49) 

in other words, at most, the covariance matrix p of the amplitudes. I 
emphasize that this conclusion is not, as far as I can establish, in conflict 
with any standard result of quantum mechanics and in particular is con- 
sistent with the primary postulate 

( A )  = Tr(Ap) (50) 

To prove (50), note that 

< A ) - ~, Ar,(x*x,) = 2 (Ap)rr (51) 
r s  r 
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On the other hand, the variance of ~ = x*Ax is not the same as the variance 
of the operator A {i.e., T r [ ( A -  ( A ) )  2 p]} unless p is a pure state. 

The distribution of the amplitudes which is of maximal entropy subject 
to a given density matrix p is a multivariate normal distribution 

Px(x) = (27r) R ip - l [  exp ( -  1 t x p lx j  (52) 

provided p-1 exists. To prove the normalization, consider the characteristic 
function 

1 
O,(t)= f exp (it*x--~ x*p-lx) dx (53) 

which can be evaluated by changing variables to the basis that diagonalizes 
p. Then, 

1 , - l ~  
~bt(t)=exp - ~ t p  t )  (54) 

The details are standard (e.g., ref. 20, p. 272), except for an extra factor of 
(2~) 1/2 per basis function which is contributed by the integration over the 
phase of the amplitudes in the basis that diagonalizes p. 

The characteristic function ~b~(t) of ~= ( A ) = x * A x  can also be 
evaluated 

~b;(t) = [I - 2itApl- 1/2 (55) 

The result (55) is an obvious generalization of (31), since (31) corresponds 
to <Xr*X~. > = 6rs< IX r] 2 > = 6rs/R, or p = I/R, where I is the identity matrix. 
As before, the Fourier transform of (55) needs to be numerically evaluated. 
The moments can be evaluated using (34). As noted earlier, (~> = Tr(Ap), 
but the variance ~:2 of (~>, ~2 = 2 Tr(Ap) 2, is not the variance of A. The 
generalization of the condition dl*'d2= 0 for the independence of two 
amplitudes is, when the covariance matrix of the distribution is p is 

d~pd2=0 (56) 

and for p = I/R we recover the simple case above. 
The special case of a pure state corresponds to p being idempatent, 

p2= p. The density matrix is then singular. Furthermore, it is no longer 
accurate enough to impose normalization "on the average" ~ r (  Ixrl 2 ) = 1, 

but we must have ~ r ]Xr l2= l .  5 This will make Px proportional to 
6 ( 1 - Z  x2). If R is large and 10) is not one of the basis states ~br, P~ will 
still be a Gaussian. 

5 We can also impose this condition in the general case. It will mean that the rank of p is 
R-1 and not R. 
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10. T H E  I N T E R M E D I A T E  CASE 

In the general case we need to specify the complete density matrix p. 
In the simple case all that we specified is Tr(pI), that is, the normalization 
of p. It is often the case ~2~) that we know several expectation values for p, 
but not p itself. The maximum entropy formalism seeks to determine that 
density matrix consistent with the given expectation values which is 
otherwise of maximal entropy. Our considerations would seem to suggest 
that this prescription is possibly incomplete. For  each p there is a 
distribution of amplitudes, i.e., a distribution over states of the ensemble 
giving rise to p.(6) For each p there is thus an a priori weight associated 
with the number of states in the ensemble. Should we not include this in 
our expression for the entropy, which should not be - T r ( p l n p ) ,  but 
rather 

entropy = - T r  p In p + Tr pS(p) (57) 

where S(p) is the entropy of the ensemble of states which is consistent with 
a given p? 

I argue that while (57) is strictly speaking a more correct expression, it 
turns out not to make a difference. That is, that S(p)= - ( 1 / 2 ) I n  p + const 
and hence the very same p would result from the maximum entropy 
formalism whether we use -Yr (p lnp)  or (57) for the entropy. The 
Lagrangian of the problem is 

L = entropy - 2o Tr p I -  ~ 2j Tr(pAj) (58) 
J 

where the Aj are the observables whose expectation values are given and 
the 2's are Lagrange multipliers whose values are determined by the given 
expectation values. The constant term in S(p) in (57) can be absorbed by 
the normalization constraint. The entropy of the density matrix of maximal 
entropy is thus the same function of the expectation values (A j ) ,  irrespec- 
tive of which scheme we use. An appeal to thermodynamics therefore 
cannot resolve the issue. 

To avoid the complexities of taking most general variations in p which 
still leaves it Hermitian, we take the case of one observable A which is 
diagonal in the basis {~br}. Given is ( A ) ,  

( A )  = ~  (x~) A,. r (59) 
r 

and we further simplify by taking x to be real. ( x  2) itself is an average 

(X2r) = f dxr X2Pxr(Xr) (60) 

822/52/5-6-6 



1218 

and 

kevine 

S~= - f  dxrP~ ln P~ (61) 

The entropy to be maximized subject to the given value of ( A )  and to 

Z (Xr ) =1 
r 

is 

(62) 

entropy = - ~  Pr In Pr + ~ p,.Sr (63) 
r r 

Taking first the variation of Pxr at a given Pr, we get as before 

Pxr ( 2 r c ( x ~ ) ) - m  exp( 2 2 = - - X f f 2 ( X r )  ) (64) 

so that 

Sr = (1 /2 ) [ ln ( (x2) )  + ln(2~e)] (65) 

and the values of the Pr, Pr--- (X2), can now be determined by a second 
variation, leading to the familiar final result 

Pr = e x p ( - 2 0  - 2Ar,.) (66) 

11. CONCLUDING REMARKS 

For the strongly mixed wave functions of highly excited states it makes 
physical sense to regard the amplitudes d * ' x  as fluctuating random 
variables. Such a point of view is indeed inherent in the statistical theories 
in nuclear and molecular physics. Even the Gaussian distribution that was 
derived here using the maximum entropy formalism has been previously 
proposed on the basis of semiclassical considerations of strong mixing, (19) 
computational evidence, (~~ and random matrix theory. (17) I have, however, 
further suggested that a correlated Gaussian distribution may be valid 
under much more general circumstances. That the physics is not 
unreasonable is shown, for example, by the following argument. Consider 
the spectroscopy of low-lying states, where wave functions are not strongly 
mixed. As we scan the frequency we go through a sequence of final states 
with the optical amplitudes d* .x . l ,  d*-x.2 ..... where the nj are the sets of 
quantum numbers of the final states. Adjacent states can have quite 
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different quantum numbers. (22/The values of the amplitudes will therefore 
vary rapidly. Hence, in the regular regime we expect the amplitudes to 
fluctuate even more than at higher energies. This is equally the case if we 
consider a set of different amplitudes a t .x ,  bt'x,.., for a given state. 
Fluctuations tend to diminish as the states become more strongly mixed. 

The Gaussian fluctuations of the amplitudes are reminiscent of the 
thermodynamic theory of fluctuations. Here, however, it is the amplitudes 
which are the variables. One can, however, derive our results for the 
distribution of observables, e.g., Eq. (33), from a thermodynamiclike 
approach. (23) It then turns out that in the limit n ~ oe (where n, the num- 
ber of degrees of freedom, is the rank of A, ( =  xtAx), the distribution of 
is indeed Gaussian. The very concept of an amplitude can arise naturally in 
an attempt to endow statistics with a geometrical structure. (24) The 
inherently "quantal" aspects enter only through the representation of 
observables by matrices which may fail to commute. The degree of this 
failure is measured by Planck's constant h, while the scale of amplitude 
fluctuations with which we have been concerned is determined by 
Boltzmann's constant k. It is very tempting to speculate that these two 
constants are dimensionally more similar than appears at first glance. So 
far, however, I am not aware that such speculations have given rise to new 
physical insights. 
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